Visit www.olerup-ssp.com for

"Instructions for Use" (IFU)

101.532-48 – including *Taq* polymerase, IFU-01 101.532-48u – without *Taq* polymerase, IFU-02

Lot No.: **15X**

Lot-specific information Olerup SSP[®] HLA-B*27 – bulk

101.532-48 – including *Taq* polymerase Product number: 101.532-48u – without Tag polymerase 15X Lot number: Expiry date: 2016-September-01 Number of tests: 48 Number of wells per test: 2 Storage - primer vials: dark at -20°C - PCR Master Mix: -20°C - Control DNAs: -20°C - Product Insert RT

This Product Description is only valid for Lot No. 15X.

Complete product documentation consists of generic Instructions for Use (IFU), lot specific Product Insert, Worksheet and Certificate.

CHANGES COMPARED TO THE PREVIOUS OLERUP SSP[®] HLA-B*27 LOT (16V)

The formats of the Product Insert and Worksheet have been changed.

The HLA-B*27 primer set, specificity and interpretation tables has been updated for the HLA-B alleles described since the previous *Olerup* SSP[®] HLA-B*27 lot (Lot No. 16V) was made. The kit design is based on IMGT/HLA database 3.16.0.

The HLA-B*27 bulk primer set is unchanged compared to the previous lot.

As of lot series V, the Specificity Table is included in the lot-specific Product Insert, and the Interpretation Table is included in the Worksheet.

Visit <u>www.olerup-ssp.com</u> for "Instructions for Use" (IFU)

Lot No.: **15X**

Lot-specific information PRODUCT DESCRIPTION

HLA-B*27 SSP typing

CONTENT

The primer set contains two vials of 5'- and 3'-primers for identifying the HLA-B27 specificity, B*27:01 to B*27:125.

The primer solutions consist of specific primer mixes, i.e. group-specific primers as well as a *control primer pair* matching non-allelic sequences.

Positive and negative control DNAs are included in the kit.

DNA 1; a B*27-positive DNA as a positive control, **IHW 9315**, **CML**, **B*08:01,27:05**. DNA 2; a B*73-positive DNA as a negative control, **IHW 9280**, **LK707**, **B*52:01:01,73:01**.

(A B*73:01-positive DNA was chosen as negative control, as this is most similar to the B*27 group of alleles in the primer matching regions.)

We recommend including one positive and one negative control DNA in each test set up. The kit contains enough control DNAs to perform 8 test set ups. If more than 8 test set ups per kit are run other positive and negative DNA samples can be used as controls (e.g. positive and negative samples from previous tests).

PCR Master Mix complete with Taq, Taq polymerase, nucleotides, buffer, glycerol and cresol red, is included in the kit including Taq polymerase.

INTERPRETATION

Due to the sharing of sequence motifs between HLA-B alleles, a few non-HLA-B*27 alleles will be amplified by primer mixes 1 and 2. For further details see Specificity Table.

UNIQUELY IDENTIFIED ALLELES

All the HLA-B*27 alleles, i.e. **B*27:01 to B*27:125**, recognized by the HLA Nomenclature Committee in April $2014^{1,2}$ are identified by the primers in the HLA-B*27 SSP kit.

¹HLA-B*27 alleles listed on the IMGT/HLA web page <u>www.ebi.ac.uk/imgt/hla</u>, release 3.16.0, April 2014.

²Alleles that have been deleted from or renamed in the official WHO HLA Nomenclature up to and including the last IMGT/HLA database release can be retrieved from web page <u>http://hla.alleles.org/alleles/deleted.html</u>.

Visit <u>www.olerup-ssp.com</u> for "Instructions for Use" (IFU)

Lot No.: **15X**

Lot-specific information **PROTOCOL**

DNA EXTRACTION

Extracted, highly pure DNA is needed for SSP typings. DNA samples to be used for PCR-SSP HLA typing should be re-suspended in dH_2O . The A260/A280 ratio should be 1.6 – 2.0 by UV spectrophotometry for optimal band visualization during electrophoresis.

We recommend automated DNA extraction with the QIAGEN EZ1 DSP DNA Blood System. ACD blood should be used as starting material.

Alternatively, the DNA can be extracted by any preferred method yielding pure DNA. When using alternative methods, the DNA concentration should be adjusted to 30 ng/ μ l. **Do not use heparinised blood with these methods.**

Recommended DNA concentration using: EZ1-extracted DNA, 15 ng/µl. DNA extracted by other methods, 30 ng/µl.

Concentrations exceeding 50 ng/ μ l will increase the risk for nonspecific amplifications and weak extra bands, especially for HLA Class I high resolution SSP typings. If necessary, dilute the extracted DNA in dH₂O.

PCR AMPLIFICATION

101.532-48 – including Taq polymerase

Per sample, dispense 5 μ l of each of the 2 HLA-B*27 bulk primer solutions into an 8 tube strip of 0.2 ml PCR tubes; e.g. primer solution 1 into well 1, primer solution 2 into well 2. Repeat for each sample including the negative and positive control DNA.

Per sample, add at room temperature in a 0.5 ml tube:

3 x 2 µl = 6 µl DNA (30 ng/µl)

3 x 3 μ I = 9 μ I PCR Master Mix complete with *Taq* – mix well before taking your aliquot

Mix well, dispense 5 μ I of the DNA-PCR Master Mix mixture into each of the 2 wells of an HLA-B*27 typing.

Cover the primer tray(s) with an adhesive PCR seal. Check that all reaction wells are completely covered to prevent evaporative loss during PCR amplification. The *Olerup* SSP[®] Compression Pad (Product No. 103.505-06) can be applied on top of the adhesive PCR seals to prevent evaporation during thermal cycling.

Use a 96 well thermal cycler with a heated lid. The temperature gradient across the heating block should be $\leq 0.75^{\circ}$ C.

Visit <u>www.olerup-ssp.com</u> for "Instructions for Use" (IFU)

Lot No.: **15X**

Lot-specific information

101.532-48u – without Taq polymerase

Per sample, dispense 5 µl of each of the 2 HLA-B*27 bulk primer solutions into an 8 tube strip of 0.2 ml PCR tubes; e.g. primer solution 1 into well 1, primer solution 2 into well 2. Repeat for each sample including the negative and positive control DNA.

Prepare a PCR Master Mix with Taq in a 0.5 ml tube. Per well: add 3 μ l of Master Mix and 0.075 μ l of Taq (5 units/ μ l).

Calculate the amount of PCR Master Mix and Taq required by multiplying the above volumes with the number of wells needed for all samples and the controls. Take care to prepare a higher volume than actually needed in order to account for pipetting losses etc. or use the table below for recommended volumes.

No. of wells per	Volume of Master Mix	Volume of Taq		
set up		0.6		
	Ils per up Master Mix (μl) polymerase 24 0.6 30 0.8 36 1.0 42 1.1 48 1.3 54 1.4 63 1.7 69 1.8 75 2.0 81 2.2 90 2.4 96 2.6 102 2.7			
	24 0.6 30 0.8 36 1.0 42 1.1 48 1.3 54 1.4 63 1.7 69 1.8 75 2.0 81 2.2 90 2.4			
22 75 2.0				
6 24 0.6 8 30 0.8 10 36 1.0 12 42 1.1 14 48 1.3 16 54 1.4 18 63 1.7 20 69 1.8 22 75 2.0 24 81 2.2 26 90 2.4 28 96 2.6 30 102 2.7 32 108 2.9 36 126 3.4 44 150 4.0 48 162 4.3 56 186 5.0 64 210 5.6				
20691.822752.024812.226902.428962.6301022.7321082.9				
	12 42 1.1 14 48 1.3 16 54 1.4 18 63 1.7 20 69 1.8 22 75 2.0 24 81 2.2 26 90 2.4 28 96 2.6 30 102 2.7 32 108 2.9 36 126 3.4 44 150 4.0 48 162 4.3 56 186 5.0 64 210 5.6			
	126	3.4		
44	150	4.0		
48	162	4.3		
56	186	5.0		
64	210	5.6		
72	240	6.4		
80	264	7.0		
88	288	7.7		
96	312	8.3		

Table 1. Mastermix preparation for HLA-B*27 bulk.

Per sample, add at room temperature in a 0.5 ml tube:

3 x 2 µl = 6 µl DNA (30 ng/µl)

 $3 \times 3 \mu I = 9 \mu I$ Master Mix with Taq prepared in the previous step – mix well before taking your aliquot

Mix well, dispense 5 μ l of the DNA-PCR Master Mix mixture into each of the 2 wells of an HLA-B*27 typing.

Cover the primer tray(s) with an adhesive PCR seal. Check that all reaction wells are completely covered to prevent evaporative loss during PCR

Visit <u>www.olerup-ssp.com</u> for "Instructions for Use" (IFU)

Lot No.: **15X** Lot-specific information amplification. The Olerup SSP[®] Compression Pad (Product No. 103.505-06) can be applied on top of the adhesive PCR seals to prevent evaporation during thermal cycling.

Use a 96 well thermal cycler with a heated lid. The temperature gradient across the heating block should be $\leq 0.75^{\circ}$ C.

PCR cycling param 1. 1 cycle	eters: 94°C	2 min	denaturation
2. 10 cycles	94°C	10 sec.	denaturation
	65°C	60 sec.	annealing and extension
3. 20 cycles	94°C	10 sec.	denaturation
	61°C	50 sec.	annealing
	72°C	30 sec.	extension
4. End - hold	RT 4°C		if less than 8 hours if longer than 8 hours

Total reaction volume in each well, 10 μ l.

The same PCR cycling parameters are used for all the Olerup SSP kits.

AGAROSE GEL ELECTROPHORESIS

Prepare a 2% (w/v) agarose gel in 0.5 x TBE buffer. Dissolve the agarose by boiling in a microwave oven. Let the gel solution cool to 60°C. Stain the gel prior to casting with ethidium bromide (10 mg/ml), 5 µl per 100 ml gel solution. For maximal ease of handling use our ethidium bromide dropper bottles (Product No. 103.301-10), 1 drop of ethidium bromide solution per 50-75 ml of gel, or our GelRedTM dropper bottle (Product No. 103.302-05) 4 drops per 100-120 ml of gel solution. **Note: Ethidium bromide is a powerful carcinogen.** Load the PCR products, preferably using an 8-channel pipette. Load a DNA size marker (100 base pair ladder, DNA Size Marker Product No. 103.202-100 or DNA Size Marker for short gel runs 103.203-100) in one well per row.

Run the gel in 0.5 x TBE buffer, without re-circulation of the buffer, for 15-20 minutes at 8-10 V/cm.

DOCUMENTATION AND INTERPRETATION

Put the gel on a UV transilluminator and document by photography. Record the presence and absence of specific PCR products. The length of the specific PCR product is helpful in the interpretation of the results. Record the presence of the internal positive control bands.

Lanes without either control band or specific PCR products should be repeated.

Visit <u>www.olerup-ssp.com</u> for "Instructions for Use" (IFU)

Lot No.: **15X**

Lot-specific information

Interpret the typings with the *lot-specific Interpretation and Specificity Tables*.

Expected results:

Dependent on the presence or absence and the specificity of the B*27 alleles in the sample the following results are possible (the co-amplified non-B27 alleles excluded):

Table 2. Interpretation of results.

Mix1	Mix2	Result
+	-	B*27 positive
-	+	B*27 positive
+	+	B*27 positive
-	-	B*27 negative

Positive control: Both mixes have to be positive for the B*27 specific products as defined in the lot-specific Interpretation and Specificity Tables. Absence of B*27 specific bands in one or both wells might indicate failure of the test.

The negative control DNA must only give rise to the internal control bands of 430 or 515 base pairs respectively and no B*27 specific bands. Additional bands might indicate inappropriate test conditions or contamination.

PCR MASTER MIXES

101.532-48 - including Taq polymerase

The PCR Master Mix complete with Taq contains:

Taq polymerase	0.4 unit per 10 μl SSP reaction
nucleotides	final concentration of each dNTP is 200 μ M
PCR buffer	final concentrations: 50 mM KCl, 1.5 mM MgCl ₂ , 10 mM Tris-HCl pH 8.3, 0.001% w/v gelatin
glycerol	final concentration of glycerol is 5%
cresol red	final concentration of cresol red is 100 μ g/ml

The same PCR Master Mix is used for all Olerup SSP kits including Taq polymerase.

The PCR Master Mix complete with *Taq* can be shipped at ambient temperature.

When stored at -20° C, the PCR Master Mix including *Taq* polymerase is stable for 33 months from the date of manufacture.

Lot-specific information

101.532-48 – including *Taq* **polymerase,** IFU-01 **101.532-48u – without** *Taq* **polymerase,** IFU-02 Visit <u>www.olerup-ssp.com</u> for "Instructions for Use" (IFU)

Lot No.: **15X**

101 532-48u - without Tag polymerase

101.532-480 – without Taq polymerase	
The PCR Master Mix without Tag contains	:

I ne PCR Master Mix	without Taq contains:
nucleotides	final concentration of each dNTP is 200 μ M
PCR buffer	final concentrations: 50 mM KCl, 1.5 mM MgCl ₂ ,
	10 mM Tris-HCl pH 8.3, 0.001% w/v gelatin
glycerol	final concentration of glycerol is 5%
cresol red	final concentration of cresol red is 100 µg/ml

The same PCR Master Mix is used for all Olerup SSP kits without Taq polymerase.

The PCR Master Mix without Taq can be shipped at ambient temperature. When stored at -20° C, the PCR Master Mix without Taq polymerase is stable for 33 months from the date of manufacture.

Visit <u>www.olerup-ssp.com</u> for "Instructions for Use" (IFU)

Lot No.: 15X

Lot-specific information SPECIFICITY TABLE

HLA-B*27 SSP typing

Specificity and size of the PCR product of the two primer mixes used for HLA-B*27 SSP typing.

Primer Mix	Size of spec. PCR product ¹	Size of control band ²	Amplified HLA-B*27 alleles	Other amplified HLA-B alleles ³
1	145 bp	430 bp	*27:01-27:05:08, 27:05:10-27:05:22, 27:05:24-27:11, 27:13-27:15, 27:17, 27:19-27:21, 27:24-27:25, 27:27- 27:28, 27:30, 27:32-27:74, 27:76, 27:78-27:84, 27:86-27:91, 27:93- 27:100, 27:102-27:118, 27:120- 27:125	*44:97
24	95 bp	515 bp	*27:01-27:05:15, 27:05:17-27:05:28, 27:08, 27:10, 27:12-27:13, 27:15- 27:18, 27:23, 27:25-27:26, 27:28- 27:29, 27:31, 27:36-27:40, 27:42, 27:44-27:45, 27:47-27:69, 27:71- 27:75, 27:77, 27:79-27:80, 27:82- 27:90:02, 27:92-27:101, 27:103- 27:105, 27:108-27:124	*07:197, 37:02, 47:04-47:05, 48:26

¹Alleles are assigned by the presence of specific PCR product(s). However, the sizes of the specific PCR products may be helpful in the interpretation of HLA-B*27 SSP typings.

When the primers in a primer mix can give rise to HLA-specific PCR products of more than one length this is indicated if the size difference is more than 20 base pairs. Size differences of 20 base pairs or less are not given. For high resolution SSP kits, the alleles listed are specified according to amplicon length.

Nonspecific amplifications, i.e. a ladder or a smear of bands, may sometimes be seen. GC-rich primers have a higher tendency of giving rise to nonspecific amplifications than other primers.

PCR fragments longer than the control bands may sometimes be observed. Such bands should be disregarded and do not influence the interpretation of the SSP typings.

PCR fragments migrating faster than the control bands, but slower than a 400 bp fragment may be seen in some gel read-outs. Such bands can be disregarded and do not influence the interpretation of the SSP typings.

Some primers may give rise to primer oligomer artifacts. Sometimes this phenomenon is an inherit feature of the primer pair(s) of a primer mix. More often it is due to other factors such as too low amount of DNA in the PCR reactions, taking too long time in setting up the PCR reactions, working at elevated room temperature or using thermal cyclers that are not pre-heated

²The internal positive control primer pairs amplify segments of the human growth hormone gene. The two different control primer pairs give rise to either an internal positive control band of 430 base pairs or a band of 515 base pairs.

Well number 1 contains the primer pair giving rise to the shorter, 430 bp, internal positive control band in order to help in the correct orientation of the HLA-B*27 typing.

In the presence of a specific amplification the intensity of the control band often decreases.

³Due to the sharing of sequence motifs between HLA-B alleles a few non-HLA-B*27 alleles will be amplified by both primer mixes.

⁴HLA-specific PCR products shorter than 125 base pairs have a lower intensity and are less sharp than longer PCR products.

Visit <u>www.olerup-ssp.com</u> for "Instructions for Use" (IFU)

Lot No.: **15X**

Lot-specific information PRIMER SPECIFICATION

Well No.	1	2
Length of spec.	145	95
PCR product		
Length of int.	430	515
pos. control ¹		
5'-primer(s) ²	167	363
	^{5'} -gCT ^{3'}	^{5'} -AAT ^{3'}
3'-primer(s) ³	272	418
	⁵ ' -TgC ^{3'}	^{5′} -gTC ^{3′}
Well No.	1	2

¹The internal positive control primer pairs amplify segments of the human growth hormone gene. The internal positive control bands are 430 or 515 base pairs respectively, well distribution as outlined in the table.

Well number 1 contains the shorter, 430 bp, internal positive control band. The well distribution of the internal controls can help in orientation of the kit on gel photo, as well as allow for kit identification. In the presence of a specific amplification the intensity of the control band often decreases.

²The nucleotide position matching the specificity-determining 3'-end of the primer is given. Nucleotide numbering as on the <u>www.ebi.ac.uk/imgt/hla</u> web site. The sequence of the 3 terminal nucleotides of the primer is given.

³The nucleotide position matching the specificity-determining 3'-end of the primer is given in the anti-sense direction. Nucleotide numbering as on the <u>www.ebi.ac.uk/imgt/hla</u> web site. The sequence of the 3 terminal nucleotides of the primer is given.

Visit <u>www.olerup-ssp.com</u> for "Instructions for Use" (IFU)

101.532-48 – including *Taq* polymerase, IFU-01 101.532-48u – without *Taq* polymerase, IFU-02

Lot No.: **15X**

Lot-specific information

CI	ELL	LINE VALID	ATION	SHE	ΕT	•
		HLA-B*27 bul	k SSP k	it ²		
Well						
					1	2
				Production No.	201328301	201328302
	IH	WC cell line ¹	HL	A-B		
1	9001		*07:02		-	-
2	9280	LK707	*52:01	*73:01	-	-
3	9011	E4181324	*52:01		-	-
4	9275	GU373	*15:10	*53:01	-	-
5	9009	KAS011	*37:01		-	-
6	9353	SM	*39:01	*51:01	-	-
7	9020		*18:01		-	-
8	9025	-	*35:01		-	-
9	9026	YAR	*38:01		-	-
10	9107	LKT3	*54:01		-	-
11	9051	PITOUT	*44:03		-	-
12	9052		*57:01		-	-
13	9004	JESTHOM	*27:05		+	+
14	9071	OLGA	*15:01	*15:20	-	-
15	9075		*40:01		-	-
16	9037	SWEIG007	*40:02		-	-
17	9282	CTM3953540	*08:01	*55:01	-	-
18	9257	32367	*14:01	*56:01	-	-
19	9038	BM16	*18:01		-	-
20	9059	SLE005	*40:01		-	-
21	9064	AMALA	*15:01		-	-
22	9056	KOSE	*35:03		-	-
23	9124	IHL	*40:02	*56:02	-	-
24	9035	JBUSH	*38:01		-	-
25	9049	IBW9	*14:02		-	-
26	9285	WT49	*58:01		-	-
27	9191	CH1007	*07:05	*51:01	-	-
28	9320	BEL5GB	*44:02	*44:03	-	-
29	9050	MOU	*44:03		-	-
30	9021	RSH	*42:01		-	-
31	9019	DUCAF	*18:01		-	-
32	9297	HAG	*41:02		-	-
33	9098	MT14B	*40:01		-	-
34	9104	DHIF	*38:01		-	-
35	9302	SSTO	*44:02		-	-
36	9024	KT17	*15:01	*35:01	-	-
37		ННКВ	*07:02		-	-
38	9099	LZL	*15:01		-	-
39	9315	CML	*08:01	*27:05	+	+
40	9134	WHONP199	*13:02	*46:01	-	-
41	9055	H0301	*14:02		-	-
42	9066	TAB089	*46:01		-	-
43		T7526	*46:01		-	-
44	9057	TEM	*38:01		-	-
45	9239	SHJO	*42:01	*50:01	-	-
46	9013	SCHU	*07:02		-	-
47	9045	TUBO	*51:01		-	-
48	0303	TER-ND	*35:01	*44:03	-	-

Visit <u>www.olerup-ssp.com</u> for "Instructions for Use" (IFU)

Lot No.: 15X

Lot-specific information

¹The provided cell line HLA specificities are retrieved from the <u>http://www.ihwg.org/hla</u> web site. The specificity of an individual cell line may thus be subject to change.

²The specificity of each primer solution in the kit has been tested against 48 well characterized cell line DNAs and where applicable, additional cell line DNAs.

Lot No.: **15X**

Lot-specific information

Visit <u>www.olerup-ssp.com</u> for "Instructions for Use" (IFU)

ADDRESSES:

Manufacturer: Olerup SSP AB, Franzengatan 5, SE-112 51 Stockholm, Sweden. *Tel:* +46-8-717 88 27 *Fax:* +46-8-717 88 18 *E-mail:* info-ssp@olerup.com *Web page:* http://www.olerup-ssp.com

Distributed by: Olerup GmbH, Löwengasse 47 / 6, AT-1030 Vienna, Austria. *Tel:* +43-1-710 15 00 *Fax:* +43-1-710 15 00 10 *E-mail:* support-at@olerup.com *Web page:* http://www.olerup.com

Olerup Inc., 901 S. Bolmar St., Suite R, West Chester, PA 19382 *Tel:* 1-877-OLERUP1 *Fax:* 610-344-7989 *E-mail:* info.us@olerup.com *Web page:* http://www.olerup.com

For information on Olerup SSP distributors worldwide, contact Olerup GmbH.

